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Positivity, Point Atoms,  and Pattersons 
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(Received 2 May 1963) 

A procedure is given for improving the Patterson function on the basis that it is non-negative. 
In the course of the procedure it has been found possible to include other types of previous knowl- 
edge, e.g. [6¢~12 >_ 0, various kinds of statistical information, minimum interatomic distances, etc. 
Preliminary results are presented which show that Patterson maps are obtainable which are essen- 
tially non-negative and which show high resolution. A theoretical analysis is included which clarifies 
the observed results. 

Associated with the improvement in the Patterson function is a corresponding extrapolation 
of the data beyond the observed range. • 

1. In troduct ion  

Many methods of crystal structure determination are 
based on analyses of the Patterson function. Clearly 
then, the problem of obtaining the best possible 
Patterson function with the data at hand is of great 
importance. For example, the phase determining 
formula (2.3.9) of a previous paper (Hauptman & 
Karle, 1962) is intimately related to the Patterson 
function and the quality of the latter therefore 
determines the accuracy with which phases may be 
computed. The main purpose of this paper is to discuss 
methods of introducing previous knowledge in order 
to improve the quality of the Patterson function. 

One kind of previous knowledge which has been 
very useful in various types of structure determination 
is the positiveness of certain functions associated 
with the structure. The concept of positivity was 
first introduced as an aid in structure determination 
in 1950. Improved electron distributions in atoms 
were obtained when the experimental scattering data 
were extrapolated in such a way as to guarantee the 
positiveness of the electron distribution (Hauptman 
& Karle, 1950). This procedure was implemented by 
Bartell & Brockway (1953) in order to obtain the 
electron distribution in argon from electron diffrac- 
tion data. 

In another application, the determination of 
molecular structure by electron diffraction was 
f~cilit~ted by m~king use of the positiveness of the 
radial distribution curve, related to the probability 
distribution of interatomie distances in a molecule 
(Karle & Karle, 1950). This led to increased accuracy 
in the determination of interatomic distances and the 
first evaluations of average amplitudes of vibrational 
motion. 

The positiveness of the electron density function 
in a crystal formed the basis for the derivation of a 
complete set of inequalities among the structure 
factors (Karle & ttauptman, 1950). Harker & Kasper 
(1948) had previously obtained inequalities based on 

the various symmetries of the space groups. However, 
in their derivation implicit use was made of the 
positive electron density. In fact the Harker-Kasper 
inequalities were shown to be contained in the set 
obtained subsequently. 

Although the inequalities contain all the informa- 
tion derivable from the positiveness of the electron 
density function, their mathematical formulation is 
such that  they have as yet only been partially im- 
plemented. The present development provides a 
practical alternative for the implementation of the 
positivity criterion. 

There are other kinds of previous knowledge which 
may be used to improve the quality of the Patterson 
function. For example, minimal bonded distances are 
known. Therefore, if the origin peak is removed, the 
values of the Patterson function in the vicinity of 
the origin may be set equal to zero. For complex 
structures, if a sufficiently extensive set of data is 
not available, the maxima in the Patterson map 
corresponding to the bonded distances may not 
actually appear. Should the maxima corresponding 
to the next larger distances occur, it is conceivable 
that  the nature of the inner maxima may perhaps 
be inferred from these. This additional information 
could then, of course, be inserted into the map. 
Any additional structural information may be con- 
firmed in the Patterson function, or, if missing, may 
be inserted. In special cases, peak heights and relative 
orient~tion~ m~y be previously known ~nd used to 
adjust the Patterson map. 

I t  will be seen that  an important aspect of the 
utilization of previous knowledge to improve the 
quality of the Patterson function is the extrapolation 
of the experimental data beyond the observed range. 
This affords still another opportunity to introduce 
additional information, i.e. the non-negativity of the 
magnitudes of the structure factors. Clearly the 
extension of the available data will materially improve 
the effectiveness of phase determining procedures as 
well as direct analyses of the Patterson function. 
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2. Improvemen t  of Patterson functions 
by use of positivity 

A procedure is presented here which makes use of the 
known positiveness of the Patterson hmetion in order 
to improve its quality. In the course of the application 
of the positiveness criterion, additional previous 
knowledge may be introduced. The procedure to be 
described does in fact incorporate various kinds of 
supplementary information. 

We start with a set of quasi-normalized structure 
factors d~h (Karle & Hauptman, 1959) defined by 

1 iv 
- Z Z ¢  exp (27~ih.rj) (2.1) 

where Zj is the atomic number of the j th  atom in 
the unit cell containing N atoms, and 

~ =  2 : z ~ .  
i=1 

The d~h have the property that  

< l # h [ Z > h  - -  1 , (2.2) 

where the average is taken over all vectors h, including 
extinctions. The Patterson function, P(r), correspond- 
ing to a point atom structure with origin peak removed, 
is then computed from 

P(r)=~2<(Id~hl 2 -  1) cos 27~h.r>h . (2.3) 

We next define an improved Patterson function P+(r) 
by means of 

P+(r) = P(r) if P(r) > 0 ,  
P+(r) = 0 if P(r) < 0 .  (2.4) 

Before proceeding to the next step, two other 
improvements in the Patterson map may be carried 
out if desired. Equation (2.2) is of course sufficient 
to insure that  P(0)=0.  However, it is known that  
P ( r ) = 0  also if Irl is less thart the smallest bonded 
distance, d, which can occur in the crystal. Hence if 
[rl <d  we may define P+(r) to be zero. Again, if the 
atoms constituting the crystal are known, then the 
minimum non-zero value of P(r) is also known. 
Therefore, in defining P+(r), not only would the 
negative values of P(r) be replaced by zero, but so 
would those positive values of P(r) which are sig- 
nificantly smaller than the known minimum value. 

Assuming then that  an improved Patterson map, 
P+(r), has been obtained, as described, we may now 
invert (2.3), replacing P(r) by P+(r), to obtain 

[#hi 2 - 1  =C(s)<P+(r) cos 2~h. r>~ (2.5) 

where the scale factor, C(s), is assumed constant for 
each small s-interval containing some 200 values of 
Id~hl2--1. If d~h is purely real or purely imaginary as 
a consequence of space group symmetry, it is known 
that  

<ll#,,I ~ -  l]>h= 0"968, (2"6) 
whereas 

([]~h] z -  ll}h= 0.736 (2.7) 

if d~h is complex. By averaging the second factor 
on the right side of (2.5) over some 200 values of h 
in each small s-interval, (2.6) and (2.7) enable one 
to evaluate the scale factor C(s) in (2.5) and therefore 
to compute [d~h[2--1 on an absolute scale. 

I t  is to be emphasized that  in this manner we not 
only obtain new values for the observed ]d~h[ 2 -  1 but, 
in addition, we obtain values for those ]d~h[2--1 
outside the observable range. In this connection, 
it is impoItant in decomposing the s-range into the 
small s-intervals for averaging purposes, that  the 
observed ]d~l 2 -  l 's  be isolated from the extrapolated 
ones. This is a consequence of the fact that  the scale 
factor C(s) in (2-5) is much larger (by a factor of 
about 4) for the extrapolated ]d~h[2--1 than for the 
observed ones, since the extrapolated ]d~h[2--1 may 
be regarded as making zero contributions to the 
average in (2.3). Naturally the values of ld~hl2--1 as 
computed from (2-5) will, in the observable range, 
differ somewhat from the observed values since 
P+(r) used in (2.5) is not identical with P(r) as 
computed in (2.3). 

We now have a set of ]d~h[2--1 values from (2.5) 
some of which, for various reasons, will be less than 
- 1 .  We may now make use of the known property 
of the [d~h] 2, namely, 

I#hl 2 > 0 ,  (2.8) 

and replace by - 1  all computed values of [d°hl 2 - 1  
which happen to be less than - 1 .  This will result in 
increasing slightly the average value of ]d~h] 2 which 
in turn calls for a rescaling of the ld~h] 2 in order to 
insure that  (]o~hl2}h=l. Having carried out these 
operations we obtain a set of IriSh[ 2 -  1 values. In the 
observable range we replace these values by their 
observed values, and retain the computed values in 
the extrapolated range. We have now an extended 
set of IriSh[ 2 - 1  values, the observed set plus an extra- 
polated set, to be used in the next step. We designate 
this new set of values by [d~+[ 2 -1 .  

The extended set of ]d~+] 2 - 1  is now used in (2.3) 
to obtain a new Patterson function Pl(r). Because 
of the way that  the extrapolated values, ]d~+]2-1, 
have been obtained, Pl(r) is expected to be an 
improvement over the first Patterson map P(r), in 
that  the negative excursions should be less prominent. 
We next treat Pl(r) in the same fashion as P(r) in 
order to extrapolate the values of [d~h[2--1 still 
further, obtain a third Patterson map P2(r), etc. 
In each successive cycle we have found it expedient 
to increase the previous range of ld~hl2--1 values 
by 10-20%. In this way we finally obtain a :Patterson 
map which is essentially positive and consistent with 
the observed data. Simultaneously we obtain an 
extrapolation of the data beyond the observed range. 
The use of these additional data gives rise to the 
expectation that  the resolution and accuracy of the 
final Patterson function will be improved. 
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A program involving the successive cycles described 
above has been wr i t ten  by  Dr J.  Holden of the Naval  
Ordnance Laboratory,  Whi te  Oaks, Md. The program 
incorporates provision for pr int ing the number  and 
average of the negative values of successive Pat terson 
maps  as well as the scale factors for the I[~hle- l l  
and I~hl e at each cycle. In  addi t ion an R index, 

R -- 27 I~ol 2 -I~cl21 
2:1~ol 2 (2.9) 

comparing the observed I~ol 2 with the computed 
I~1 ~ at each cycle, is printed.  A typical  comparison 
from a test  calculation on arginine data  is shown in 
Figs. 1 and 2. Fig. 1 shows a portion of the ini t ia l  
Pat terson function calculated from 1406 observed 
data.  Fig. 2 shows the same portion using 2688 data  
obtained after six i terations of the above outl ined 
procedure. Improvement  of the resolution is apparent  
from inspection and is consistent with the true 
structure which has been subsequent ly  obtained 
(I. L. Kar le  & J.  Karle,  to be published). We also 
noted tha t  in the course of the extrapolat ion of the 
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Fig. 1. Fig. 2. 

Fig. 1. Portion of the original Patterson function for arginine 
(1406 observed data), computed from (2.3). 

Fig. 2. Portion of the Patterson function for arginine after 
six cycles of iteration (2688 data), computed from (2-3). 

data,  certain of the observed intensit ies,  evident ly  
affected by  absorption errors, were corrected by  the 
i terat ive procedure. Fur ther  studies of the details  of 
the procedure are being made and will be reported 
in due course. 

3. I m p r o v e m e n t  of the  P a t t e r s o n  func t ion  
by use  of k n o w n  interatomic  vectors  

Informat ion  concerning in tera tomic vectors is occa- 
sionally known independent ly  of the Pat terson cal- 
culation. This i lfformation m a y  be checked against  
the computed Pat terson function. If necessary, i t  is 
evident  tha t  the Pat terson map  m a y  be al tered to 
conform with this a priori  knowledge. 

A case of par t icular  interest  occurs in which general 
s t ructural  information is combined wi th  features 
appearing in the Pat terson map to yield addit ional  
detail  otherwise unobta inable  from the l imited ex- 
per imenta l  data. Protein structures consti tute an 
example  in which the da ta  are so l imited tha t  the 
shortest in tera tomic vectors will not appear  in the 
Pat terson function. If the 2.4 A shell is not resolved 
by the avai lable  data,  it  is possible tha t  the applicat ion 
of the posi t iv i ty  criterion m a y  reveal it. If we assume 
tha t  the 2.4 A shell is present  in the map, i t  is possible 
to utilize addi t ional  s t ructural  information to infer 
the nature  of the 1.4 /~ shell. This affords another  
basis in addit ion to posit ivity,  for extending the 
observed data.  

¢ 

Fig. 3. Portion of an organic structure showing a typical 
spatial relationship between bonded and skip distances. 

We proceed now to describe a method for obtaining 
the 1.4 /~ shell from the 2.4 /~ shell. Fig. 3 i l lustrates  
a typical  detai l  of the structure.  Corresponding to a 
distance lc], hereafter  referred to as a skip distance, 
is a pair  of adjacent  bonded distances la] and ]bl. 
We employ the s t ructural  informat ion that ,  in a 
s tat is t ical  sense, [al and ]bJ are in the v ic ini ty  of 1-4/~, 
Ic] is about  2.4 A, and the angles ~ andf l  are about  35 °. 
In  short, corresponding to each skip vector c are 
bond vectors a each lying on the cone having c as 
principal  axis and semi-vertex angle approximate ly  
35 ° . Conversely, corresponding to each fixed bond 
vector a are skip vectors c each lying on the cone 
with principal  axis a and semi-vertex angle about  35 °. 

Referring to Fig. 4, let a be any  vector of length,  
for example,  1.4 •. Construct the cone with ver tex 
at the origin, having a as the principal  axis, and with 
semi-vertex angle of 35 ° . In  view of the previous 
discussion, the Pat terson value P(a)  is obtained by  
integrat ing the Pat terson funct ion along the circum- 
ference of the circle which is the intersection of this  
cone with the 2.4 A shell. If  the resolution of the 
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x 

Fig. 4. The dens i ty  a t  a specified point  on the  1.4 A shell: 
represented by  the vector  a, in a complex organic s t ruc ture  
is propor t ional  to the  dens i ty  on the  circle in the  2.4 A 
shell, described by  ro ta t ing  the  vector  c abou t  the  axis a. 
The angle a is app rox ima te ly  35 °. 

2.4 /~ shell is sufficiently good, the magnitude of a 
may range over an interval, e.g. 1.2-1-6 J~, with a 
corresponding range, roughly 2-2-2.6 A, for the 
magnitude of c. 

In this way we obtain the 1.4 A shell of the Patterson 
function on a relative scale. I t  is necessary to put  these 
values on an absolute scale in order to conform with 
the remainder of the Patterson map. This may be 
done by observing tha t  the number of bonded dis- 
tances, and the number of skip distances, are each 
roughly equal to the number of atoms in the unit 
cell. Thus the contents of the 1.4 J~ and 2.4 ~ shells 
are roughly equal and are given by 

I P ( r ) d r - ~ l  P ( r ) d r ~ - Z Z ~ Z J ~ - Z Z ~ Z J '  (3.1) 
,1.4 2.4 i,j i,j 

bonded skip 

where the first two integrals are extended over the 
1.4 J~ and 2.4 J~ shells respectively, and the last two 
sums are over the bonded distances and skip distances 
respectively. 

A process such as this, combined with the positivity 
criterion, should yield, by an iterative procedure, 
an improved Patterson function together with a 
further extrapolation of the observed data. 

4 .  A n a l y s i s  

We investigate next the procedure for applying the 
positivity criterion described in § 2. For convenience 
the analysis is limited to the case of N identical 
atoms in P1. However, the conclusions to be drawn 
are generally valid. 

In view of 

1 lS°°s in_mXdx_ 1 if m > O }  (4.01) T(m)=-2-+ ~ o x -- ' 
=0,  if m < 0  

P+(r) of equation (2.4) may be defined analytically 
by means of 

P+(r) = P(r)  T(v2(r)) (4.02) 

where, for convenience, we use yJ(r)=a~lp(r) ,  since 
T(yJ(r ) )=l  or 0 depending on whether P ( r ) > 0  or 
P(r)  < 0. 

Employing the Taylor expansion of sin [xy~(r)] and 
reversing the order of integration, the average on 
the right of (2.5) may be wri t ten 

I { 1I~[ ~(r) x2 P(r)  exp (2~ih. r) dr 1 + _ yJ(r) - 
7~ 0 

~PS(r) . . .  dx} + ~ V  ~ -  ] • (4.03) 

Denoting by n the number of contributors to the 
average, (2-3) may be writ ten 

P(r)  = (TJ• ( ld~12-1)exp ( - 2 ~ i k . r ) .  (4.04) 
n k 

We carry out the r integration for each of the four 
terms appearing in (4-03): 

½ P(r) exp (2~ ih . r )dr=b~- -~n( lNhI2 -1  ) (4-05) 

where 6~= 1 or 0 depending upon whether or not h 
occurs in the set {k} of (4.04). Next., 

1 f ~ P(r)~v(r)exp (2~ih . r )dr  

_ (72 .~,(l#k,12__l)(lOZh_k,12__l ) (4.06) 
7~n2 k' 

p(72 
_ uneh~ ([d~hl 2 - 1 )  (4"07) 

(Hauptman & Karle, 1955), where p is the number 
of vectors k '  such tha t  both k'  and h - k '  in (4.06) 
occur among the vectors k of (4.04). Similarly, 

3.T7~ P(r)~°3(r) exp (2~ih.r)  dr 

(Y2 p '  
= - 3 !--~" nan 3 (Irish12-1), (4.08) 

i i 5!:~ P(r)v/5(r) exp (2nih. r )  dr 

(72 p, t  
= 5 ! : . n 6 N 5  ( [ # h i 2 - - 1 )  , (4"09) 

where p'( < n 8) and p"( < n 5) depend on h and decrease 
with increasing l hi. 

Proceeding as in an earlier paper (Karle & Haupt-  
man, 1953) (4.03) reduces to (4.05) plus 

°°2 
~n2N ([d~12-1) exp 6n2N2pX 2 

.)o 

24n2N4 \3n2p 2 ~2-p] 

Carrying out this integration we finally obtain, for 
the average on the right of (2.5), 
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[,_ 
If  IhI is small ,  then  p _~ n, p'  ~_ n3, p"  _ n 5 and  both 

summands  in the braces of (4:-11) make approximate ly  
equal  contributions.  As Ih I increases the first  summand  
makes  a constant  contr ibut ion (equal to unity)  while 
the  contr ibut ion of the second s u m m a n d  decreases 
slowly. As Ihl continues to increase, unt i l  f inal ly  h 
is no longer contained in the set {k}, the contr ibut ion 
of the f irst  s u m m a n d  drops suddenly  to zero so tha t  
the second s u m m a n d  is the only contributor.  These 
results  are consistent with the observat ion tha t  the 
cycling process yields values of I#hl 2 - 1  proportional  
to the  observed data,  with slowly increasing scale 
factor C(s), unt i l  at  the boundary  of the observed 
range a sharp increase in the scale factor (by a factor 
of order 4,) occurs. This is followed again by  a gradual  
increase in the scale factor. 

We wish to express our appreciat ion to Dr J.  Holden 
for his excellent  cooperation in programming and  
carrying out the calculations and to Peter  Gum and 
Stephen Brenner  for carrying out certain aux i l i a ry  
calculations. 
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The Crystal Structure and Absolute Configuration of ~-Bromoisotut in  

BY B. M. CRAVEN 

Crystallography Laboratory, University of Pittsburgh, Pittsburgh 13, Pa., U.S .A.  

(Received 8 April 1963) 

Crystals of a-bromoisotutin (C15H1706Br) are trigonal, space group P312, with lattice para- 
meters a = 8.449, c = 36.61 A and six molecules to the unit cell. The crystal structure has been 
determined by a three-dimensional X-ray analysis and the absolute configuration established by a 
study of the X-ray dispersion effect of the bromine atoms with Cu K radiation. The molecular 
structure of a-bromoisotutin has the unusual feature of a cyclopentane ring to which are attached 
two epoxy rings. One of these is a spire ring while the other is fused to the cyclopentane ring in a 
position which is a, fl with respect to the spire ring. The molecular framework and its absolute 
configuration are the same as in the chemically and pharmacologically related members of the 
picrotoxinin series. 

Introduction 

Turin  (C15HlsO6) was first  isolated by  Easterf ie ld  & 
Aston (1901) and  ident i f ied as the convulsive poison 
present  in the leaves and seeds of the New Zealand 
species of Coriaria, a shrub known to the Maori as 
' toi toi'. This poison is a considerable hazard  to 
grazing animals.  

Turin is one of a series o~ chemically and pharma- 
cologically similar  compounds of which picrotoxinin 
(C15H1606) has  been the most in tens ively  studied. 
The s tructure (I) for picrotoxinin was proposed by  
Conroy (1951, 1957) and this was confirmed by the 
X-ray  crystal  s tructure analysis  of al-bromopicro- 
toxin in  (Craven, 1962). The absolute configuration of 
a l -bromopicrotoxinin  (II) was also de termined from 
the  X-ray  dispersion effect. The structure (III) for 
tu r in  was proposed by Karyone  & Okuda (1953) on 
the  basis of chemical degradat ion studies and  the 
picrotoxinin structure.  Fur the r  chemical and spectral 

evidence led Johns  & Markham (1961) to propose 
the s tructure (IV) for tut in .  

A detai led account is now given of an X-ray  crystal  
s t ructure analysis  of a-bromoisotut in  (V) wlfich has 
a l ready been reported brief ly (Craven, 1963) together 
with the crystal  da ta  of three other bromine der ivat ives  
of tur in.  

In addition to the present work, the crystal struc- 
ture of a-bromoisotut inone is being s tudied by  Mrs 
MacKay  (Universi ty  of Melbourne, Australia)  and  
Dr A. L. Mathieson (C.S.I.R.O., Melbourne, Australia) .  
Their  results (private communicat ion)  show tha t  the 
molecule of this  derivat ive possesses the same molec- 
ular  framework as a-bromoisotut in.  

Crystal data 

The crystals of c¢-bromoisotutin, which were supplied 
through the courtesy of Dr Basil  Johns  (Universi ty  


