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Positivity, Point Atoms, and Pattersons
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U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A.

(Recetved 2 May 1963)

A procedure is given for improving the Patterson function on the basis that it is non-negative.
In the course of the procedure it has been found possible to include other types of previous knowl-
edge, e.g. |&nl2 = 0, various kinds of statistical information, minimum interatomic distances, etc.
Preliminary results are presented which show that Patterson maps are obtainable which are essen-
tially non-negative and which show high resolution. A theoretical analysis is included which clarifies

the observed results.

Associated with the improvement in the Patterson function is a corresponding extrapolation

of the data beyond the observed range.

1. Introduction

Many methods of crystal structure determination are
based on analyses of the Patterson function. Clearly
then, the problem of obtaining the best possible
Patterson function with the data at hand is of great
importance. For example, the phase determining
formula (2:3-9) of a previous paper (Hauptman &
Karle, 1962) is intimately related to the Patterson
function and the quality of the latter therefore
determines the accuracy with which phases may be
computed. The main purpose of this paper is to discuss
methods of introducing previous knowledge in order
to improve the quality of the Patterson function.

One kind of previous knowledge which has been
very useful in various types of structure determination
is the positiveness of certain functions associated
with the structure. The concept of positivity was
first introduced as an aid in structure determination
in 1950. Improved electron distributions in atoms
were obtained when the experimental scattering data
were extrapolated in such a way as to guarantee the
positiveness of the electron distribution (Hauptman
& Karle, 1950). This procedure was implemented by
Bartell & Brockway (1953) in order to obtain the
electron distribution in argon from electron diffrac-
tion data.

In another application, the determination of
molecular structure by electron diffraction was
facilitated by making use of the positiveness of the
radial distribution curve, related to the probability
distribution of interatomic distances in a molecule
(Karle & Karle, 1950). This led to increased accuracy
in the determination of interatomic distances and the
first evaluations of average amplitudes of vibrational
motion.

The positiveness of the electron density function
in a crystal formed the basis for the derivation of a
complete set of inequalities among the structure
factors (Karle & Hauptman, 1950). Harker & Kasper
(1948) had previously obtained inequalities based on

the various symmetries of the space groups. However,
in their derivation implicit use was made of the
positive electron density. In fact the Harker-Kasper
inequalities were shown to be contained in the set
obtained subsequently.

Although the inequalities contain all the informa-
tion derivable from the positiveness of the electron
density function, their mathematical formulation is
such that they have as yet only been partially im-
plemented. The present development provides a
practical alternative for the implementation of the
positivity criterion.

There are other kinds of previous knowledge which
may be used to improve the quality of the Patterson
function. For example, minimal bonded distances are
known. Therefore, if the origin peak is removed, the
values of the Patterson function in the vicinity of
the origin may be set equal to zero. For complex
structures, if a sufficiently extensive set of data is
not available, the maxima in the Patterson map
corresponding to the bonded distances may not
actually appear. Should the maxima corresponding
to the next larger distances occur, it is conceivable
that the nature of the inner maxima may perhaps
be inferred from these. This additional information
could then, of course, be inserted into the map.
Any additional structural information may be con-
firmed in the Patterson function, or, if missing, may
be inserted. In special cases, peak heights and relative
orientations may be previously known and used to
adjust the Patterson map.

It will be seen that an important aspect of the
utilization of previous knowledge to improve the
quality of the Patterson function is the extrapolation
of the experimental data beyond the observed range.
This affords still another opportunity to introduce
additional information, 7.e. the non-negativity of the
magnitudes of the structure factors. Clearly the
extension of the available data will materially improve
the effectiveness of phase determining procedures as
well as direct analyses of the Patterson function.
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2. Improvement of Patterson functions
by use of positivity

A procedure is presented here which makes use of the
known positiveness of the Patterson function in order
to improve its quality. In the course of the application
of the positiveness criterion, additional previous
knowledge may be introduced. The procedure to be
described does in fact incorporate various kinds of
supplementary information.
We start with a set of quasi-normalized structure
factors &y (Karle & Hauptman, 1959) defined by
1 N
En=— X Zjexp (2nth.ry) 2-1)
Voriz
where Z; is the atomic number of the jth atom in
the unit cell containing N atoms, and

N
o2 =23 Z]? .
=1
The &y have the property that

{Eu®n=1,

where the average is taken over all vectors h, including
extinctions. The Patterson function, P(r), correspond-
ing to a point atom structure with origin peak removed,
is then computed from

P(ry=02{(|&pj2—1) cos 2zh. Ty . (2-3)

(22)

We next define an improved Patterson function P+(r)
by means of
P+(r) = P(r) it P(r) >0,

Pir)=0 if P(r)<O. (24)

Before proceeding to the next step, two other
improvements in the Patterson map may be carried
out if desired. Equation (2-2) is of course sufficient
to insure that P(0)=0. However, it is known that
P(r)=0 also if |r| is less than the smallest bonded
distance, d, which can occur in the crystal. Hence if
Ir| <d we may define P+(r) to be zero. Again, if the
atoms constituting the crystal are known, then the
minimum non-zero value of P(r) is also known.
Therefore, in defining P+*(r), not only would the
negative values of P(r) be replaced by zero, but so
would those positive values of P(r) which are sig-
nificantly smaller than the known minimum value.

Assuming then that an improved Patterson map,
P+(r), has been obtained, as deseribed, we may now
invert (2-3), replacing P(r) by P+(r), to obtain

|gh|z_1=0(s)<P+(r) cos 2zh.r), (2-5)

where the scale factor, C(s), is assumed constant for
each small s-interval containing some 200 values of
[&nl2—1. If &, is purely real or purely imaginary as
a consequence of space group symmetry, it is known
that

(|I&w[2—1]yy = 0-968,, (2:6)
whereas
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<||gh12_1]>h=0'736 (2°7)

if &y is complex. By averaging the second factor
on the right side of (2-5) over some 200 values of h
in each small s-interval, (2:6) and (2-7) enable one
to evaluate the scale factor C(s) in (2:5) and therefore
to compute |&y|2—1 on an absolute scale.

Tt is to be emphasized that in this manner we not
only obtain new values for the observed |&,|2—1 but,
in addition, we obtain values for those |&yl2—1
outside the observable range. In this connection,
it is important in decomposing the s-range into the
small s-intervals for averaging purposes, that the
observed |&y|2—1’s be isolated from the extrapolated
ones. This is a consequence of the fact that the scale
factor C(s) in (2-5) is much larger (by a factor of
about 4) for the extrapolated |&4|2—1 than for the
observed ones, since the extrapolated |&y|2—1 may
be regarded as making zero contributions to the
average in (2-3). Naturally the values of |&|2—1 as
computed from (2:5) will, in the observable range,
differ somewhat from the observed values since
P+(r) used in (2-5) is not identical with P(r) as
computed in (2-3).

We now have a set of |&y|2—1 values from (2-5)
some of which, for various reasons, will be less than
—1. We may now make use of the known property
of the | |2, namely,

|Enl2 >0, (2-8)

and replace by —1 all computed values of |&y|2—1
which happen to be less than —1. This will result in
increasing slightly the average value of |&}]2 which
in turn calls for a rescaling of the |&})2 in order to
insure that (|&n|?)p=1. Having carried out these
operations we obtain a set of |&y|2—1 values. In the
observable range we replace these values by their
observed values, and retain the computed values in
the extrapolated range. We have now an extended
set of |&u[2—1 values, the observed set plus an extra-
polated set, to be used in the next step. We designate
this new set of values by |&f[2—1.

The extended set of |£F|2—1 is now used in (2-3)
to obtain a new Patterson function P;(r). Because
of the way that the extrapolated values, |§3|2—1,
have been obtained, Pi(r) is expected to be an
improvement over the first Patterson map P(r), in
that the negative excursions should be less prominent.
We next treat Py(r) in the same fashion as P(r) in
order to extrapolate the values of |&y|2—1 still
further, obtain a third Patterson map P,(r), etc.
In each successive cycle we have found it expedient
to increase the previous range of |&y|2—1 values
by 10-20%. In this way we finally obtain a Patterson
map which is essentially positive and consistent with
the observed data. Simultaneously we obtain an
extrapolation of the data beyond the observed range.
The use of these additional data gives rise to the
expectation that the resolution and accuracy of the
final Patterson function will be improved.
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A program involving the successive cycles described
above has been written by Dr J. Holden of the Naval
Ordnance Laboratory, White Oaks, Md. The program
incorporates provision for printing the number and
average of the negative values of successive Patterson
maps as well as the scale factors for the ||&y[2—1]
and |&y|? at each cycle. In addition an R index,

Z{| 602 — | &l
Z|&o

comparing the observed |&,|2 with the computed
|&c|2 at each cycle, is printed. A typical comparison
from a test calculation on arginine data is shown in
Figs.1 and 2. Fig.1 shows a portion of the initial
Patterson function calculated from 1406 observed
data. Fig. 2 shows the same portion using 2688 data
obtained after six itcrations of the above outlined
procedure. Improvement of the resolution is apparent
from inspection and is consistent with the true
structure which has been subsequently obtained
(I. L. Karle & J.Karle, to be published). We also
noted that in the course of the extrapolation of the

R= (2:9)

ol

a=

‘AP
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1

H c—> L c—> 7
Fig. 1. Fig. 2.

Fig. 1. Portion of the original Patterson function for arginine
(1406 observed data), computed from (2-3).

Fig. 2. Portion of the Patterson function for arginine after
six cycles of iteration (2688 data), computed from (2-3).
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data, certain of the observed intensities, evidently
affected by absorption errors, were corrected by the
iterative procedure. Further studies of the details of
the procedure are being made and will be reported
in due course.

3. Improvement of the Patterson function
by use of known interatomic vectors

Information concerning interatomic vectors is occa-
sionally known independently of the Patterson cal-
culation. This information may be checked against
the computed Patterson function. If necessary, it is
evident that the Patterson map may be altered to
conform with this a priori knowledge.

A case of particular interest occurs in which general
structural information is combined with features
appearing in the Patterson map to yield additional
detail otherwise unobtainable from the limited ex-
perimental data. Protein structures constitute an
example in which the data are so limited that the
shortest interatomic vectors will not appear in the
Patterson function. If the 24 A shell is not resolved
by the available data, it is possible that the application
of the positivity criterion may reveal it. If we assume
that the 2-4 A shell is present in the map, it is possible
to utilize additional structural information to infer
the nature of the 1:4 A shell. This affords another
basis in addition to positivity, for extending the
observed data.

Fig. 3. Portion of an organic structure showing a typical
spatial relationship between bonded and skip distances.

We proceed now to describe a method for obtaining
the 1-4 A shell from the 2-4 A shell. Fig. 3 illustrates
a typical detail of the structure. Corresponding to a
distance |c|, hereafter referred to as a skip distance,
is a pair of adjacent bonded distances |a] and |b|.
We employ the structural information that, in a
statistical sense, |a| and |b| are in the vicinity of 1-4 A,
c|is about 24 A, and the angles « and B are about 35°.
In short, corresponding to each skip vector ¢ are
bond vectors a each lying on the cone having ¢ as
principal axis and semi-vertex angle approximately
35°. Conversely, corresponding to each fixed bond
vector a are skip vectors ¢ each lying on the cone
with principal axis a and semi-vertex angle about 35°.

Referring to Fig. 4, let a be any vector of length,
for example, 1-4 A. Construct the cone with vertex
at the origin, having a as the principal axis, and with
semi-vertex angle of 35°. In view of the previous
discussion, the Patterson value P(a) is obtained by
integrating the Patterson function along the circum-
ference of the circle which is the intersection of this
cone with the 2-4 A shell. If the resolution of the
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X

Fig. 4. The density at a specified point on the 1-4 A shell,
represented by the vector a, in a complex organic structure
is proportional to the density on the circle in the 2-4 A
shell, described by rotating the vector ¢ about the axis a.
The angle & is approximately 35°.

24 A shell is sufficiently good, the magnitude of a
may range over an interval, e.g. 1-2-1-6 A, with a
corresponding range, roughly 2-2-2:6 A, for the
magnitude of c.

In this way we obtain the 1-4 A shell of the Patterson
function on a relative scale. It is necessary to put these
values on an absolute scale in order to conform with
the remainder of the Patterson map. This may be
done by observing that the number of bonded dis-
tances, and the number of skip distances, are each
roughly equal to the number of atoms in the unit
cell. Thus the contents of the 1-4 A and 2-4 A shells
are roughly equal and are given by

Pr)ydr~X37Z:2;~3Z:Z;,
2.4 ) ¥
bonded skip

SMP(r)dr: S (31)

where the first two integrals are extended over the
1-4 A and 2-4 A shells respectively, and the last two
sums are over the bonded distances and skip distances
respectively.

A process such as this, combined with the positivity
criterion, should yield, by an iterative procedure,
an improved Patterson function together with a
further extrapolation of the observed data.

4. Analysis

We investigate next the procedure for applying the

positivity criterion described in § 2. For convenience

the analysis is limited to the case of N identical

atoms in Pl. However, the conclusions to be drawn

are generally valid.

In view of

de=1, if m>0

o x ’
=0, if m<0

T(m)=%+lS sin mx

- (4-01)

P+(r) of equation (2:4) may be defined analytically
by means of

P+(r)=P(r)T(y(r)) (4:02)
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where, for convenience, we use y(r)=o05'P(r), since
T(y(r))=1 or 0 depending on whether P(r)>0 or
P(r)<0.

Employing the Taylor expansion of sin [zy(r)] and

reversing the order of integration, the average on

the right of (2-5) may be written

S P(r) exp (2nih.r)dr {% + % g:’ {w(r) - ) 22

5
+ 'Ps(f)ﬁ—...]dz} . (403)
Denoting by » the number of contributors to the
average, (2:3) may be written

P(r) = 0';227(IcO@mP—l)exp(—27zik.r). (4-04)
k

We carry out the r integration for each of the four
terms appearing in (4-03):

h 02

5, (16alP=1) (405)

gS P(r) exp (2ih.r)dr = §

where 68=1 or 0 depending upon whether or not h
occurs in the set {k} of (4-04). Next,

}IS P(r)y(r) exp (2nth.1)dr

=%2(1&'12—1)(%‘,-1{'12—1) (4-06)
TINe g’
~ 22 (4-07)

(I€n2—1)

~ maneN

(Hauptman & Karle, 1955), where p is the number
of vectors k’ such that both k' and h—k’ in (4-06)
occur among the vectors k of (4-04). Similarly,

- %Z & P(r)y3(r) exp (2nth.1) dr
o2 p' .,
=315 e €D, (408)
5“}7! S P(r)y3(r) exp (2nih.r) dr

B g2 pll
T 5lm néN®

(I6ulf=1), (409)

where p'(<n8) and p'’( <n®) depend on h and decrease
with increasing |h|.

Proceeding as in an earlier paper (Karle & Haupt-
man, 1953) (4-03) reduces to (4-05) plus

002 *© '
0

2 __ _~p 2}
22 (i~ exp{ﬁnzszx

l plz pll 4}
- - de. (41
x {1 24n2 N4 <3n2p2 5n2p) vy (410)

Carrying out this integration we finally obtain, for
the average on the right of (2-5),
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o2 [ sn 6p\} 9 1_1&”)]} 2_ .
2o+ () [1-3(5 - 2s) ]} 0€ur-- @y

If |h| is small, then p ~n, p’ ~n3, p” ~n5 and both
summands in the braces of (4-11) make approximately
equal contributions. As |h|increases the first summand
makes a constant contribution (equal to unity) while
the contribution of the second summand decreases
slowly. As |h| continues to increase, until finally h
is no longer contained in the set {k}, the contribution
of the first summand drops suddenly to zero so that
the second summand is the only contributor. These
results are consistent with the observation that the
cycling process yields values of |£}|2—1 proportional
to the observed data, with slowly increasing scale
factor C(s), until at the boundary of the observed
range a sharp increase in the scale factor (by a factor
of order 4) occurs. This is followed again by a gradual
increase in the scale factor.
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The Crystal Structure and Absolute Configuration of x~Bromoisotutin

By B. M. CraveEN
Crystallography Laboratory, University of Pittsburgh, Pittsburgh 13, Pa., U.S.A.

(Received 8 April 1963)

Crystals of «-bromoisotutin (C,;H,,0¢Br) are trigonal, space group P3,2, with lattice para-
meters ¢ =8-449, ¢c=36-61 A and six molecules to the unit cell. The crystal structure has been
determined by a three-dimensional X-ray analysis and the absolute configuration established by a
study of the X.ray dispersion effect of the bromine atoms with Cu K radiation. The molecular
structure of a-bromoisotutin has the unusual feature of a cyclopentane ring to which are attached
two epoxy rings. One of these is a spiro ring while the other is fused to the cyclopentane ring in a
position which is «, f with respect to the spiro ring. The molecular framework and its absolute
configuration are the same as in the chemically and pharmacologically related members of the

picrotoxinin series.

Introduction

Tutin (Ci1:H1s06) was first isolated by Easterfield &
Aston (1901) and identified as the convulsive poison
present in the leaves and seeds of the New Zealand
species of Cortaria, a shrub known to the Maori as
‘toi toi’. This poison is a considerable hazard to
grazing animals.

Tutin is one of a series of chemically and pharma-
cologically similar compounds of which picrotoxinin
(C15H1606) has been the most intensively studied.
The structure (I) for picrotoxinin was proposed by
Conroy (1951, 1957) and this was confirmed by the
X.-ray crystal structure analysis of o;-bromopicro-
toxinin (Craven, 1962). The absolute configuration of
ai-bromopicrotoxinin (IT) was also determined from
the X.ray dispersion effect. The structure (IIT) for
tutin was proposed by Karyone & Okuda (1953) on
the basis of chemical degradation studies and the
picrotoxinin structure. Further chemical and spectral

evidence led Johns & Markham (1961) to propose
the structure (IV) for tutin.

A detailed account is now given of an X-ray crystal
structure analysis of «-bromoisotutin (V) which has
already been reported briefly (Craven, 1963) together
with the crystal data of three other bromine derivatives
of tutin.

In addition to the present work, the crystal struc-
ture of x-bromoisotutinone is being studied by Mrs
MacKay (University of Melbourne, Australia) and
Dr A. L. Mathieson (C.S.I.R.O., Melbourne, Australia).
Their results (private communication) show that the
molecule of this derivative possesses the same molec-
ular framework as x-bromoisotutin.

Crystal data

The crystals of x-bromoisotutin, which were supplied
through the courtesy of Dr Basil Johns (University



